Five Novel Taccalonolides from the Roots of the Vietnamese Plant Tacca paxiana

by Andrea Mühlbauer* and Stephan Seip

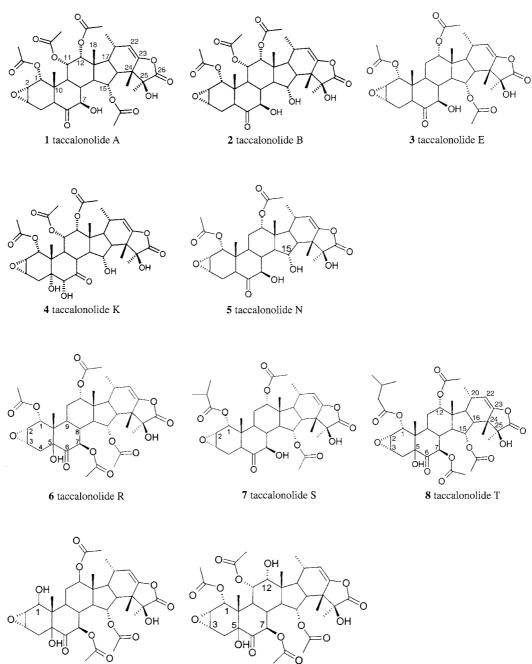
Bayer AG, Pharma Research Center Wuppertal, Life Science Center Natural Products, P.O. Box 101709, D-42096 Wuppertal

and

Alexander Nowak

Bayer Crop Science, D-51368 Leverkusen

and


Van Sung Tran

National Center for Natural Science and Technology, Institute of Chemistry Nghia Do – Cau Gia – Ha Noi, Vietnam

Chemical investigation of the roots of the Vietnamese plant *Tacca paxiana* resulted in the isolation of five new steroidal compounds, taccalonolide R (6), S (7), T (8), U (9), and V (10). Their structures were established on the basis of NMR and mass-spectral data. In addition, the five known taccalonolides A (1), B (2), E (3), K (4), and N (5) were also isolated and identified.

Introduction. - The genus Tacca (Taccaceae) includes some 50 species distributed predominately in tropic zones, especially in asiatic countries like China and Vietnam [1]. In folk medicine, Tacca species are used against slugs and snails, as an agent for controlling roundworms [2], for treatment of gastric ulcer, toothache, and stomachache [3]. Some *Tacca* species have been investigated chemically, and amino acids [4], anthocyanins [5], steroidal saponins, and sapogenins [6-8] have been isolated. From Tacca plantaginea, the thirteen taccalonolides A-M [9–13], from a Tacca spec. taccalonolide N [14], and from *Tacca subflaellata* taccalonolides O-Q [15] have been isolated so far. Taccalonolide A (1) is claimed to be important for initiation of paclitaxel-like microtubule bundling; therefore, taccalonolide A is the first microtublestabilizing agent isolated from a plant since identification of the mechanism of action of paclitaxel, and it is the first natural-product steroid identified to have these cellular effects [16]. In the present paper, we report the isolation and structure elucidation of five novel taccalonolides, taccalonolide R (6), S (7), T (8), U (9), and V (10), which were isolated as minor components besides the known-taccalonolides A (1), B (2), E (3), K (4), and N (5) from the roots of *Tacca paxiana* collected in Vietnam.

Results and Discussion. – About 1000 kg of wet *Tacca paxiana* roots were collected in Thai Nguyen province in northern Vietnam and subsequently extracted with 3000 l of MeOH to afford 43 kg of crude extract. After liquid-liquid partition of the extract, taccalonolides were enriched in the *t*-BuOMe fraction. Isolation of taccalonolides was

then performed on reversed-phase materials (*C18*) with $H_2O/NH_4HCOO/MeOH$ gradients or on silicagel with $CH_2Cl_2/MeOH$ gradients. In total, the ten taccalonolides A, B, E, K, N, R, S, T, U, and V (1–10, resp.) were isolated and their structures elucidated.

Whereas the known taccalonolides A (1), B (2), E (3), K (4), and N (5) were identified in the first instance by comparison of spectral data with those previously described [17][10][12], the complex structures of the five novel as well as the known metabolites were elucidated by a combination of ESI-HPLC-MS and 1D and 2D NMR spectroscopy. All one-bond ${}^{1}\text{H}$, ${}^{13}\text{C}$ connectivities were established by a heteronuclear multiple-quantum-coherence (HMQC) experiment, ${}^{1}\text{H}$, ${}^{1}\text{H}$ connectivities by correlation spectroscopy (COSY), and two- or three-bond ${}^{1}\text{H}$, ${}^{13}\text{C}$ connectivities by heteronuclear multiple-bond connectivity (HMBC) experiments. Ionization of taccalonolides was in most cases only observed in the negative mode of the ESI-LC-MS. Adducts with formate (HCOO) or acetate (ACO), were formed depending on the chromatographic gradient system.

For taccalonolide A (1), the ESI-HR-MS displayed a peak at m/z 747 corresponding to C₃₇H₄₇O₁₆ ([M + HCOO]⁻), for taccalonolide B (2) at m/z 659 corresponding to C₃₄H₄₃O₁₃ ([M - H]⁻), for taccalonolide E (3) at m/z 689 corresponding to C₃₅H₄₅O₁₄ ([M + HCOO]⁻), and for taccalonolide K (4) at m/z 675 corresponding to C₃₄H₄₃O₁₄ ([M - H]⁻). The ¹H- and ¹³C-NMR shifts of 1-4 (*Tables 1* and 2) were identical to those described in the literature. The structures were confirmed by analyzing their 2D spectra.

Taccalonolide N (5) displayed a molecular-ion peak at m/z 601 ($[M-H]^-$) in the negative and m/z 603 ($[M+H]^+$) in the positive mode of ESI-LC-MS. The ¹H-NMR (*Table 1*) was similar to that of taccalonolide E (3) but correlated also with the mass difference of 42.

The H–C(15) signal at δ 5.50 (*dd*) in **3** was shifted to δ 4.41 (*dd*) in **5** showing the loss of an Ac group. Besides, only two Ac signals could be observed for **5** at δ 2.11 (*s*) and 2.12 (*s*) whereas, for **3**, three signals corresponding to the Ac groups at δ 1.99 (*s*) and 2.10 (2*s*) were detected.

In addition to the five known taccalonolides, the five novel taccalonolides R, S, T, U, and V (6-10, resp.) were identified.

The ESI-LC-MS of taccalonolide R (6) exhibited $[M + AcO]^-$ at m/z 761 and $[M - H]^-$ at m/z 701 showing the same MS but a different ¹H-NMR spectrum (*Table 3*) as taccalonolide A (1). Further comparison of the spectroscopic data with those of **3** and taccalonolide 6 [12] established the structure of **6**.

The ¹H-NMR and ¹H,¹H 2D COSY data of **6** revealed also four Ac groups but differences in shifts of H-C(1), H-C(2), H-C(3), $CH_2(4)$, H-C(7), H-C(8), and H-C(9) in comparison to **1**. The signal of H-C(5) was missing in comparison to **3**. Comparing the spectroscopic data of **6** to those of taccalonolide G [12], it was deduced that H-C(5) of **3** was replaced by an OH group. Therefore, H-C(1) of **3** was shifted from $\delta 4.61$ (d, J = 5.4 Hz) to 4.85 (d, J = 4.9 Hz) in **6**, H-C(2) from $\delta 3.51$ (dd, J = 3.7 Hz) to 3.72 (m), H-C(3) from $\delta 3.39$ (m) to 3.60 (br. s), and $CH_2(4)$ from $\delta 2.21$ (m) to 2.55 and 2.25 (2m). Besides, C(5) was shifted from $\delta 43.72$ in **3** to 79.36 in **6** and C(6) from δca . 210 to 201 supporting that one OH group was attached to position C(5) (*Table 2*). The strong low-field shift of H-C(7) at $\delta 3.89$ (d, J = 9.8 Hz) in **3** to 5.61 (d, J = 10.7 Hz) in **6** suggested that the fourth AcO group was located at C(7), which was also supported by shift differences of H-C(8) and H-C(9).

	1 ^a)	2 ^b)	3 ^a)	4 ^a)	5 ^a)
H-C(1)	4.73 (d, J = 5.4)	4.60 (d, J = 4.6)	4.61 (d, J = 5.4)	4.88	4.65
				(d, J = 5.35)	(d, J = 5.12)
H-C(2)	3.49 (dd, J = 5.1, 3.9)	3.34 (<i>m</i>)	3.51	3.69	3.55
			(dd, J = 3.7)	(dd, J = 4.4, 4.5)	(dd, J = 4.0)
H-C(3)	3.39 (<i>m</i>)	2.10 (<i>m</i>)	3.39 (<i>m</i>)	3.54 (<i>m</i>)	3.43 (<i>m</i>)
$CH_2(4)$	2.23, 2.20 (2m)	1.96, 2.05 (2m)	2.21 (<i>m</i>)	2.55, 2.17 (2m)	2.18, 2.29 (2m)
H-C(5)	2.77 (<i>m</i>)	2.68 (<i>m</i>)	2.68	-	2.74
			(dd, J = 7.3)		(dd, J = 4.55, 11.4)
H-C(6)	-	-	-	4.31 (s)	-
H-C(7)	4.00 (d, J = 10.2)	4.20 (d, J = 10.8)	3.89(d, J = 9.8)	-	4.03 (d, J = 10.3)
H-C(8)	1.71 (<i>m</i>)	1.80 (<i>m</i>)	1.71 (<i>m</i>)	3.06 (<i>m</i>)	1.74 (<i>m</i>)
H-C(9)	2.72 (<i>m</i>)	2.62 (<i>m</i>)	2.13 (<i>m</i>)	3.08 (m)	2.13 (<i>m</i>)
H-C(11) or	5.32	5.13	1.70 (<i>m</i>)	5.42 (<i>m</i>)	1.71 (<i>m</i>)
$CH_{2}(11)$	(dd, J = 11.7, 2.5)	(dd, J = 14.7, 2.2)			
H - C(12)	5.27 (d, J = 2.5)	5.04 (d, J = 2.2)	5.01 (br. s)	5.23 (m)	5.01 (m)
H - C(14)	2.45 $(dd, J = 9.9)$	2.00 (<i>m</i>)	2.40 (<i>m</i>)	2.33 (<i>m</i>)	2.10 (<i>m</i>)
H - C(15)	5.54	4.27	5.49	4.24	4.41
	(dd, J = 9.7, 9.7)	(dd, J = 9.0, 9.4)	(dd, J = 9.3, 9.3)	(dd, J = 8.5, 9.1)	(dd, J = 9.6, 9.6)
H - C(16)	2.42	2.40	2.40 (<i>m</i>)	2.47 (<i>m</i>)	2.42 (<i>m</i>)
	(dd, J = 9.0, 9.0)	(dd, J = 10.0, 13.0)			
H - C(17)	1.78 (<i>m</i>)	1.68 (<i>m</i>)	1.70 (<i>m</i>)	1.88(s)	2.03 (<i>m</i>)
Me(18)	0.99(s)	0.84(s)	0.86(s)	1.00(s)	0.86(s)
Me(19)	0.78(s)	0.67(s)	0.71 (s)	1.23 (s)	0.78(s)
H - C(20)	2.21 (m)	2.13 (<i>m</i>)	2.20 (m)	2.24 (<i>m</i>)	2.23 (m)
Me(21)	0.92 (d, J = 7.1)	0.75(d)	0.97 (d, J = 6.8)	0.87 (d, J = 7.0)	0.98 (d, J = 6.7)
H - C(22)	5.08 (br. s)	4.96 (br. s)	5.10 (d, J = 1.2)	5.00 (<i>m</i>)	5.05 (br. s)
Me(27)	1.64(s)	1.51 (s)	1.65 (s)	1.63 (s)	1.70 (s)
Me(28)	1.35 (s)	1.16 (s)	1.36 (s)	1.27 (s)	1.40 (s)
AcO-C(1)	2.18 (s)	1.80(s)	2.10 (s)	2.06 (s)	2.11 (s)
AcO-C(7)	-	-	-	-	-
AcO-C(11)	1.99 (s)	2.05 (s)	-	1.89 (s)	-
AcO-C(12)	2.13 (s)	2.05 (s)	2.10 (s)	2.06 (s)	2.12 (s)
AcO-C(15)	2.00 (s)	-	1.99 (s)	-	-
^a) In CDCl ₃ .	^b) In (D ₆)DMSO.				

Table 1. ¹*H*-*NMR Data* (500 MHz) of 1-5. δ in ppm, *J* in Hz.

Taccalonolide S (7) displayed molecular-ion peaks at m/z 731 ($[M + AcO]^{-}$) and m/z 671 ($[M - H]^{-}$) consistent with the proposed structure.

The ¹H-NMR of **7** (*Table 3*) was very similar to that of **3** but showed a *d* for two Me groups at δ 1.01 (*d*, *J* = 4.5 Hz) and an additional CH group at δ 2.22 (*m*). Only two Ac groups at δ 2.11 (*s*) and 2.00 (*s*) were observed. Therefore, it was deduced that one Ac group of **3** was replaced by a Me₂CHCO group in **7**. This was confirmed by ¹H,¹³C long-range correlation from H–C(1) at δ 4.58 and the CH of Me₂CH at δ 2.22 to the C=O of COO at 171.60. H–C(1) correlated with H–C(2) at δ 3.52 (*m*) in the ¹H,¹H 2D COSY experiment.

The ESI-LC-MS of taccalonolide T (8) exhibited $[M + AcO]^-$ at m/z 803 and $[M - H]^-$ at m/z 745. The ¹H-NMR spectrum (*Table 3*) was very similar to that of **6** but indicated the presence of a 3-methylbutanoyl instead of an Ac group.

Helvetica Chimica Acta - Vol. 86 (2003)

	1 ^a)	2 ^b)	3 ^a)	4 ^a)	6 ^a)	7 ^a)	8 ^a)	9 ^a)
C(1)	73.18	72.50	71.37	73.80	72.34	70.69	72.16	69.98
C(2)	49.59	51.66	50.08	50.04	50.64	49.64	50.55	52.93
C(3)	52.12	52.99	53.32	53.55	54.59	52.88	54.66	54.34
C(4)	21.05	21.08	21.39	28.52	26.86	21.07	26.82	26.97
C(5)	41.97	41.65	43.72	80.63	79.36	43.24	79.27	79.87
C(6)	209	208	210.54	77.11	201.18	210.24	201.06	201.46
C(7)	75.01	75.90	77.18	212.47	76.06	76.80	76.07	75.75
C(8)	43.03	41.36	43.44	44.70	39.80	43.16	39.73	40.04
C(9)	40.03	39.55	37.38	41.50	33.97	36.84	33.88	33.60
C(10)	42.87	42.59	41.16	42.32	44.16	40.93	43.98	44.43
C(11)	70.89	70.62	25.50	70.37	26.17	25.12	26.81	26.22
C(12)	73.76	73.44	74.34	73.18	74.25	73.87	73.98	73.41
C(13)	43.32	43.37	43.52	44.04	44.03	43.25	39.28	43.80
C(14)	54.28	57.13	54.88	52.19	54.30	54.29	54.11	54.64
C(15)	71.37	75.90	72.29	70.12	71.89	71.85	71.90	71.60
C(16)	51.04	40.08	54.99	50.11	51.54	50.97	51.47	51.07
C(17)	48.62	47.50	48.44	47.58	48.25	48.43	48.14	47.93
C(18)	13.29	12.82	13.67	11.69	13.61	13.19	13.56	13.31
C(19)	12.97	12.48	13.52	14.20	14.86	13.12	14.75	14.07
C(20)	30.63	30.34	30.86	30.06	30.91	30.70	30.80	30.51
C(21)	20.07	19.69	20.27	18.66	20.04	19.75	19.91	19.55
C(22)	111.21	110.55	111.84	110.02	111.61	112.45	111.53	111.38
C(23)	154.46	154.10	154.83	154.08	154.24	154.55	154.37	154.08
C(24)	49.73	49.92	50.36	50.26	50.24	50.07	50.24	49.84
C(25)	79.28	78.71	79.56	78.82	79.09	78.88	78.52	79.01
C(26)	178.20	175.16	178.57	175.45	177.90	178.23	177.99	177.85
C(27)	20.57	21.73	20.90	20.35	20.61	20.39	20.52	20.27
C(28)	25.20	24.76	25.69	23.20	25.34	25.12	25.32	24.99
MeCOO-C(1)	20.79	20.48	21.28	18.98	21.29			
MeCOO-C(7)	-	-	-		20.50		21.26	20.89
MeCOO-C(11)	21.06	20.50		19.53				
MeCOO-C(12)	20.79	20.50	21.28	18.98	21.07	21.03	21.44	20.93
MeCOO-C(15)	22.57		22.89		22.92	22.44	22.94	22.58
MeCOO - C(1)	169.44	170.04	169.73	169.48	169.37			
MeCOO - C(7)					170.87		171.05	169.89
MeCOO - C(11)	170.56	169.63		170.51				
MeCOO-C(12)	169.27	169.63	169.32	169.56	169.49	169.24	169.26	170.78
MeCOO-C(15)	172.17		172.37		172.05	172.29	172.59	171.81
$Me_2CH\cdots C(1)$						30.73	31.31	
Me_2 CH ··· C(1)						22.37	22.43	
						171.60	171.88	

Table 2. ¹³C-NMR Data of 1-4 and 6-9. δ in ppm.

Two additional ¹H-NMR signals for two Me groups at δ 1.01 (d, J = 5.5 Hz) and 1.02 (d, J = 5.5 Hz), one CH₂ group at δ 2.20 (d), and one CH group at δ 2.20 (m) were compatible with a 3-methylbutanoyl group in **8**. Because of a ¹H,¹³C long-range correlation from the CH₂ group, at δ 2.20 and the H–C(1) at δ 4.81 to the C=O at δ 171.88, it was assumed that the AcO group at C(1) was replaced by Me₂CHCH₂COO, in accordance with the MS data.

	6	7	8	9	10
H-C(1)	4.85 (d, J = 4.9)	4.58	4.81 (d, J = 5.1)	3.86 (d, J = 4.9)	4.85 (d, J = 5.4)
		(d, J = 5.2)			
H-C(2)	3.72(m)	3.52(m)	3.73 (dd, J = 4.2)	3.54(m)	3.72 (<i>m</i>)
H-C(3)	3.60 (br. s)	3.37 (m)	3.58(m)	3.62(m)	3.61 (<i>m</i>)
$CH_2(4)$	2.55, 2.25 (2m)	2.18(m)	2.53, 2.22 (2m)	2.58, 2.14 (2m)	2.12, 2.66 (2m)
H-C(5)	-	2.65(m)	-	-	-
H-C(7)	5.61	3.87	5.59 (d, J = 10.1)	5.61 $(d, J = 10.4)$	4.71
	(d, J = 10.7)	(d, J = 9.8)			(d, J = 10.3)
H-C(8)	2.01 (m)	1.72 (<i>m</i>)	1.99 (<i>m</i>)	1.99 (<i>m</i>)	1.76 (<i>m</i>)
H-C(9)	2.87(m)	2.12(m)	2.85	2.93	3.19 (<i>m</i>)
			(td, J = 12.4, 4.0)	(dd, J = 9.7, 12.2)	()
CH ₂ (11) or	1.72(m)	1.70 (<i>m</i>)	1.70 (<i>m</i>)	2.11, 1.64 (2m)	5.23(m)
H - C(11)	· /	. ,			()
H-C(12)	5.01 (br. s)	5.00(m)	5.00(m)	5.05(m)	5.07
· · /	× /		~ /	()	(d, J = 13.4)
H - C(14)	2.58(m)	2.35(m)	2.56(m)	2.58(m)	2.52(m)
H - C(15)	5.55 (dd, J = 9.1)	5.48	5.52 (dd, J = 9.1)	5.52	5.55
()	· · · · /	(dd, J = 9.5)	· · · · · · · · · · · · · · · · · · ·	(dd, J = 9.3, 9.1)	(dd, J = 9.8)
H - C(16)	2.41 (<i>m</i>)	2.39(m)	2.38	2.40 (m)	2.49 (m)
· · /			(dd, J = 13.4, 9.6)	()	()
H - C(17)	2.02 (<i>m</i>)	1.95 (<i>m</i>)	1.99 (<i>m</i>)	2.04(m)	1.88 (m)
Me(18)	0.92(s)	0.85(s)	0.89(s)	0.91(s)	1.05 (s)
Me(19)	0.73(s)	0.70(s)	0.72(s)	0.60(s)	0.78(s)
H - C(20)	2.24(m)	2.19 (m)	2.21(m)	2.22(m)	2.22(m)
Me(21)	0.97	0.96	0.97 (d, J = 6.9)	1.01 (d, J = 6.9)	0.89
· · /	(d, J = 6.9)	(d, J = 6.8)			(d, J = 7.1)
H - C(22)	5.13 (s)	5.09 (m)	5.11 (br. s)	5.12 (br. s)	5.04 (br. s)
Me(27)	1.66(s)	1.64(s)	1.63 (s)	1.64 (s)	1.36 (s)
Me(28)	1.37 (s)	1.35(s)	1.33(s)	1.33 (s)	1.66(s)
AcO-C(1)	2.17(s)	-	-	-	2.13(s)
AcO - C(7)	2.13(s)	_	2.15(s)	2.16(s)	2.16(s)
AcO-C(11)	-	_	-	-	2.00(s)
AcO-C(12)	2.13(s)	2.11(s)	2.10(s)	2.14(s)	-
AcO-C(15)	1.99 (s)	2.00(s)	1.97(s)	1.96 (s)	1.98(s)
$Me_2CH \cdots C(1)$	-	2.22(m),	2.20(m),	-	-
2 ()		1.01 (d, J = 4.5)	1.02(d, J = 5.5)		

Table 3. ¹*H*-*NMR Data* (CDCl₃) of 6-10. δ in ppm, *J* in Hz.

The ESI-LC-MS of taccalonolide U (9) exhibited $[M + AcO]^-$ at m/z 705 and $[M - H]^-$ at m/z 659, revealing that one Ac group was replaced by a H-atom in comparison to taccalonolide R (6). The ¹H-NMR spectrum of 9 (*Table 3*; H-C(1) at δ 3.86 (d, J = 4.9 Hz)) indicated that an OH group was attached to C(1), rather than an AcO group like in **6**.

The ESI-LC-MS of taccalonolide V (10) exhibited $[M + AcO]^-$ at m/z 777 and $[M - H]^-$ at m/z 717. The ¹H-NMR spectrum (*Table 3*) suggested that the basic structure was similar to taccalonolide A (1) with the difference that an OH group was attached at C(5).

The OH-C(5) of **10** was supported by the low-field shifts of H-C(2), H-C(3), and $CH_2(4)$ (*Table 3*; *cf.* data of taccalonolide R (6)). In contrast to taccalonolide A (1), the AcO group of **10** was attached to C(7) and not to C(12) as supported by the shift differences of H-C(12) and H-C(7).

Experimental Part

General. Chemicals of anal. grade were obtained from *Merck* (Darmstadt, Germany) or *Sigma Aldrich* (Deisenhofen, Germany). Anal. HPLC: *HP-1100* unit (*Hewlett-Packard*, Waldbronn, Germany) with automated sample injector and diode-array detector; *LiChroSpher-C-18* column ($125 \times 2 \text{ mm}$; 5 µm; *Macherey & Nagel*); eluent: $A = 25 \text{ mmol NH}_4\text{OAc}$ in $H_2\text{O}$, $B = 25 \text{ mmol NH}_4\text{OAc}$ in MeOH; start 20% *B*, 30 min 60% *B*, 31 min 100% *B* 40 min 100% *B*; flow 0.4 ml/min; detection at 210 nm and with ELSD; t_R in min. NMR Spectra: *Bruker Avance-500* spectrometer, at 500.13 MHz (¹H) with the solvent peak as internal reference (CDCl₃: δ (H) 7.24, δ (C) 77.0; (D₆)DMSO: δ (H) 2.49, δ (C) 39.5). ESI-HPLC-MS and ESI-HR-MS: instrument 1: *HP-1100* coupled to a *Micromass-LCT* mass spectrometer (*Micromass*, Manchester, UK), *Waters* symmetry column as stationary phase ($50 \times 2.1 \text{ mm}$; 3μ M); eluent: A = 0.1% HCOOH in H₂O, B = 0.1% HCOOH in MeCN, start 100% *A*, 5 min 10% *A*, 6 min 10% *A*, 7 min 100% *B*; instrument 2: *HP-1100* coupled to *TSQ700* (*Finnigan*), *Inertsil-ODS3* column ($250 \times 2.1 \text{ mm}$; 5μ M); eluent: A = 25 mm NH₄OAc in H₂O, B = 25 mmol NH₄OAc in MeOH, start 50% *B*, 10 min 60% *B*, 30 min 100% *B*, 40 min 100% *B*; flow 0.2 ml/min; temp. 10°; in *m/z*.

Plant Material. The plant material of *Tacca paxiana* was collected in Thai Nguyen province in northern Vietnam in 1999.

Extraction and Isolation. The *Tacca paxiana* roots (1000 kg) were extracted with MeOH (3000 l) to afford dry crude extract (43 kg). The extract was dissolved in H₂O/MeOH 95:5 (80 l) and extracted five times with heptane (30 l) and *t*-BuOMe (30 l). The *t*-BuOMe fraction was mixed with silica gel (3 kg) and evaporated and the residue put in a fritted-glass funnel and eluted with CH₂Cl₂ (60 l): 315 g of material. Thereof, 50-g portions were chromatographed (*Biotage* silica-gel columns (*KP-SIL* 32–63 μ M; 350 × 75 mm; eluent: *A* = CH₂Cl₂, *B* = MeOH; start 100% *A*, 121 min 95% *A*, 131 min 95% *A*, 141 min 90% *A*, 151 min 80% *A*, 191 min 80% *A*; flow 98 ml/min).

Taccalonolides A (1; 2 g), E (3; 1.5 g), N (5; 1 mg), S (7; 13 mg), T (8; 28 mg), and U (9; 4 mg) were obtained in pure form from fractions that eluted between 80 and 100 min by repeated prep. HPLC: *Gilson Abimed* HPLC (UV detector, binary pump system); software Unipoint 1.71 (*Gilson*); 1. *Nucleosil C18* (7 μ m; 250 × 20 mm; *Macherey & Nagel*); flow 25 ml/min; eluent: A = 0.1% CF₃COOH in H₂O, phase B = 0.1% CF₃COOH in MeCN, start 85% A, 1 min 85% A, 30 min 25% A, 35 min 25% A; 2. *Nucleosil C18* (7 μ m; 250 × 20 mm; *Macherey & Nagel*); flow 25 ml/min; eluent: A = 0.1% CF₃COOH in H₂O; B 0.1% CF₃COOH in MeCN, start 70% A, 1 min 70% A, 30 min 25% A, 35 min 25% A; 3. *Nucleosil C18* (7 μ m; 250 × 10 mm; *Macherey & Nagel*); flow rate 12.5 ml/min; eluent: $A = H_2O + 2$ g of NH₄HCOO/1 B = MeCN + 2 g of NH₄HCOO/1, start 80% A, 40 min 40% A, 41 min 0% A.

Taccalonolides B (2; 2 mg), K (4; 0.3 mg), R (6; 2.2 mg), and V (10; 0.4 mg) were obtained in pure form from fractions that eluted between 60 and 80 min by repeated prep. HPLC methods described above.

Taccalonolide A (1): Amorphous solid. t_R 23.36; log P = 2.37 (pH 2.3), log P = 2.35 (pH 7.5). ¹H-NMR: *Table 1*. ¹³C-NMR: *Table 2*. ESI-MS (instrument 2): 761 ([M + AcO]⁻), 701 ([M - H]⁻). ESI-HR-MS: 747.2866 ([M + HCOO]⁻, $C_{37}H_{47}O_{16}^-$; calc. 747.28641).

Taccalonolide B (**2**): Amorphous solid. t_{R} 24.51; log P = 2.58 (pH 2.3), log P = 2.56 (pH 7.5). ¹H-NMR: *Table 1*. ¹³C-NMR: *Table 2*. ESI-MS (instrument 1): 659 $[M - H]^-$). ESI-HR-MS: 659.27045 (C₃₄H₄₃O₁₃; calc. 659.27037).

Taccalonolide E (**3**): Amorphous solid. $t_{\rm R}$ 22.96; log P = 2.36 (pH 2.3), log P = 2.34 (pH 7.5). ¹H-NMR: *Table 1*. ¹³C-NMR: *Table 2*. ESI-MS (instrument 2): 703 ($[M + \text{AcO}]^-$), 643 ($[M - \text{H}]^-$). ESI-HR-MS: 689.2813 ($[M + \text{HCOO}]^-$, $C_{34}H_{45}O_{12}^-$; calc. 689.28093).

Taccalonolide K (4): Amorphous solid. $t_R 20.10$; log P = 2.58 (pH 2.25). ¹H-NMR: *Table 1*. ¹³C-NMR: *Table 2*. ESI-MS (instrument 1): 675 ($[M - H]^-$).

Taccalonolide N (5): Amorphous solid. $t_{\rm R}$ 25.81; log P = 2.61 (pH 2.3), log P = 2.60 (pH 7.5). ¹H-NMR: *Table 1*. ESI-MS (instrument 1): 601 ($[M - H]^-$).

Taccalonolide R (= (1 α ,2 α ,3 α ,7 β ,12 α ,15 α ,16 β ,24 β ,25S)-1,7,12,15-*Tetrakis*(acetyloxy)-2,3-epoxy-5,23,25-trihydroxy-6-oxo-16,24-cycloergost-22-en-26-oic Acid γ -Lactone; **6**): Amorphous solid. t_R 27.00; log P = 2.75 (pH 2.3), log P = 2.73 (pH 7.5). ¹H-NMR: *Table* 3. ¹³C-NMR: *Table* 2. ESI-MS (instrument 2): 761 ([M + AcO]⁻), 701 ([M – H]⁻). ESI-HR-MS: 747.2864 ([M + HCOO]⁻, $C_{37}H_{47}O_{16}$; calc. 747.2864).

Taccalonolide S (=(1*a*,2*a*,3*a*,7*β*,12*a*,15*a*,16*β*,24*β*,25S)-12,15-Bis(acetyloxy)-2,3-epoxy-7,23,25-trihydroxy-1-(2-methyl-1-oxopropoxy)-6-oxo-16,24-cycloergost-22-en-26-oic Acid γ -Lactone; **7**): Amorphous solid. $t_{\rm R}$ 26.45; log P = 1.93 (pH 2.3), log P = 1.91 (pH 7.5). ¹H-NMR: *Table 3*. ¹³C-NMR: *Table 2*. ESI-MS (instrument 2): 731 ([M + AcO]⁻), 671 ([M – H]⁻).

Taccalonolide T (=(1*a*,2*a*,3*a*,7*β*,12*a*,15*a*,16*β*,24*β*,25S)-7,12,15-Tris(acetyloxy)-2,3-epoxy-5,23,25-trihydroxy-1-(3-methyl-1-oxobutoxy)-6-oxo-16,24-cycloergost-22-en-26-oic Acid γ -Lactone; **8**): Amorphous solid. $t_{\rm R}$ 25.53; log P = 3.58 (pH 2.3), log P = 3.57 (pH 7.5). ¹H-NMR: *Table 3*. ¹³C-NMR: *Table 2*. ESI-MS (instrument 2): 803 ([M + AcO]⁻), 745 ([M - H]⁻). ESI-HR-MS: 789.33347 ([M + HCOO]⁻, $C_{40}H_{53}O_{16}^-$; calc. 789.33347).

Taccalonolide U (=($1\xi_{2a}, 3a, 7\beta, 12\xi_{15a}, 16\beta, 24\beta, 25S$)-7,12,15-*Tris(acetyloxy)-2,3-epoxy-1,5,23,25-tetrahy-droxy-6-oxo-16,24-cycloergost-22-en-26-oic Acid \gamma-Lactone; 9): Amorphous solid. t_{R} 26.22; log P = 2.45 (pH 2.3), log P = 2.43 (pH 7.5). ¹H-NMR: <i>Table 3*. ¹³C-NMR: *Table 2*. ESI-MS (instrument 1): 705 ([M + HCOO]⁻), 659 ([M - H]⁻). ESI-HR-MS: 705.27528 ([M + HCOO]⁻, $C_{35}H_{45}O_{15}$; calc. 705.27585).

Taccalonolide V $(=(1\alpha,2\alpha,3\alpha,7\beta,11\alpha,12\alpha,15\alpha,16\beta,24\beta,25S)-1,7,11,15-Tetrakis(acetyloxy)-2,3-epoxy-5,12,23,25-tetrahydroxy-6-oxo-16,24-cycloergost-22-en-16-oic Acid <math>\gamma$ -Lactone; **10**): Amorphous solid. t_R 21.52; log P = 2.35 (pH 2.3). ¹H-NMR: *Table 3*. ¹³C-NMR: *Table 2*. ESI-MS (instrument 2): 777 ($[M + AcO]^-$, 717 ($[M - H]^-$). ESI-HR-MS: 763.28102 ($[M + HCOO]^-$], $C_{37}H_{47}O_{17}$; calc. 763.28102).

REFERENCES

- [1] 'Index Kewensis', Oxford University Press, 1993.
- [2] A. Abdel-Aziz, K. Brain, A. K. Bashir, Phytotherapy Res. 1990, 4, 62.
- [3] Jiangsu College of New Medicine, 'Dictionary of Chinese Medicine', Shanghia People's Press, Vol. 1, p. 524.
- [4] K. P. Tiwari, R. D. Tripathi, Vijnana Parishad Anusandhan Pratrika 1980, 23, 157.
- [5] R. D. Tripathi, K. P. Tiwari, Planta Med. 1981, 41, 414.
- [6] F. K. Ngok, A. N. Kelginbaev, M. B. Gorvits, N. K. Abubakirov, Chem. Nat. Compd. 1980, 16, 262.
- [7] A. Abdel-Aziz, K. Brain, G. Blunden, T. Crabb, A. K. Bashir, Phytochemistry 1990, 29, 1643.
- [8] A. Abdel-Aziz, K. Brain, G. Blunden, T. Crabb, A. K. Bashir, Planta Med. 1990, 56, 218.
- [9] Z. Chen, J. Shen, Y. Gao, *Heterocycles* 1989, 29, 2103.
- [10] Z. Chen, B. Wang, J. Shen, Phytochemistry 1988, 27, 2999.
- [11] J. Shen, Z. Chen, Y. Gao, Chin. J. Chem. 1991, 1, 92.
- [12] Z. Chen, J. Shen, Y. Gao, M. Wichtl, Planta Med. 1997, 63, 40.
- [13] J. Shen, Z. Chen, Y. Gao, *Phytochemistry* **1996**, 42, 891.
- [14] A. Mühlbauer, M. Gehling, R. Velten, W. Andersch, C. Erdelen, A. Harder, P. Marczok, R. Nauen, A. Turberg, V. S. Tran, G. Adam, J.-K. Liu, Int. Pat. WO 01/04256 to Bayer AG Germany, 2001.
- [15] Y. Huang, J.-K. Liu, A. Mühlbauer, T. Henkel, Helv. Chim. Acta 2002, 85, 1.
- [16] T. K. Hemscheidt, S. L. Mooberry, University of Hawaii, Int. Pat. WO 00/71563 A2, 2000.
- [17] Z. Chen, B. Wang, M. Chen, Tetrahedron 1987, 28, 1673.

Received September 26, 2002